Origin Stories: Pathogen

The first Pathogen puzzle was created in November, 2008 for the public health issue (16.3 – Jan/Feb 2009) of Imagine, but for various reasons, never made it to the website around that time. When the magazine returned to the topic of public health (23.3 – Jan/Feb 2016), it not only made sense to design another Pathogen puzzle, but also to prepare both puzzles for the website.

Pathogen example: two days to spread, one person vaccinated

While I’ve forgotten some of the details about how I first came up with the idea of a puzzle based on a disease, I do recall that this was a time when bird flu (H5N1) was in the news. I knew immediately that a puzzle about public health was going to focus on, in some form, the mathematics of disease transmission. It did take some creative effort, however, to take those ideas and form a puzzle with them.

If you think about it, the structure of the puzzle scenario does not make a whole lot of sense. If you know who is infected, the contact chart, and how many days the pathogen has had to spread, it really strains credibility that you wouldn’t already know who patient zero is or (in particular) who is vaccinated against the pathogen. The more realistic problem is: knowing who is infected and some idea of the contact chart, figuring out who else might be infected. But I couldn’t figure out how to make a puzzle from that situation which was still well-defined and not trivial. In other words, if the contact chart is completely defined, then determining who would be infected is easy. If the contact chart is not completely defined, then it’s impossible to completely determine who would be infected. This mirrors reality, but isn’t very compelling as a puzzle, since puzzles are supposed to have solutions.

The Pathogen puzzles as created aren’t that difficult, since you can figure them out through brute force if necessary: trying out every infected person as patient zero and seeing what happens. There are faster ways to solve the puzzle, of course, but even each detailed solution basically makes good guesses as to whom patient zero might be, then simply tries them all. I needed to explore the sensible possibilities to create and test out each puzzle, and while there is typically a different method used to create versus solve one of my puzzles, in this case I couldn’t think of an alternative.

Testing each infected person as patient zero (solution bottom right)

Finally, I’ve met experts in a wide variety of fields through my years as a student and now as a professor, and those connections definitely come in handy when writing a new puzzle in an area which I have no expertise. The instructions were vetted by people both on my end and at the magazine, and their most important suggestion was to use “vaccinate” instead of “inoculate”, as the latter can mean to deliberately introduce a pathogen but not necessarily to produce immunity (such as for a culture or as a treatment). Even though the scientific situation of the puzzle may not be realistic, I still want to get these educating details right.