SET Interview, Part 2

Cell Wall Transport System Puzzle 2
Cell Wall Transport System – Puzzle 2
Your range as a puzzlemaker—the types of puzzles you created and their settings—really grew over time. I still remember when you sent us a puzzle inspired by something you learned in a biology class.

Yes, the professor was talking about how a particular cellular transport system works, and I thought, this could make a good puzzle. There were some channels that allowed molecules to move alone (uniport), others that required co-transport with another molecule (symport), and still others that required transport of another molecule in the opposite direction (antiport). It took some thinking before I decided how to use those channels in a puzzle, but eventually I came up with the right structure. Instead of having a traditional finish line, the goal of the puzzle was to use the channel-based passageways to move objects through the puzzle until all the objects had been moved to receptors scattered throughout the puzzle.

Puzzles are always based on rules. Coming up with new puzzle ideas means coming up with new sets of rules. So I’m constantly on the lookout for real-world situations that contain some inherent rules or structure that I could build upon or transform into a puzzle.

Greek Temple – Puzzle 4
That biology puzzle was the first of your “themed” puzzles, where your Knossos Games puzzle related in some way to the theme of the issue of Imagine in which the puzzle would appear. You came up with some wonderfully creative ideas, like the archaeology puzzles with the Indiana Jones-like booby-trapped squares in a maze.

As I became more experienced, I was ready to take on greater challenges and wanted to focus on creating puzzles that are unique. About ten years into creating puzzles for Imagine, I decided that I wanted each puzzle to relate to the theme of each issue. That self-imposed constraint was difficult but inspired some of my best puzzles. It was a real struggle at times to fit each issue, with topics as diverse as “energy” to “service and leadership” to “medicine.” I never would have thought to base a puzzle on fish ladders if I hadn’t been given the topic of “marine biology.”

Clockwise from top left: Wind Farm puzzles, Logic 19 – Park Cleanup, Pathogen puzzles, Fish Ladder puzzles

The archaeology puzzles were made for a history issue. I had to make a bunch of them because there were many ways to set up the rules, and I had to try out various rules and see what would work. Often, I don’t know before I create a puzzle what the solution will be. The final form of the puzzle emerges only after trying out different rules and combinations of rules, following them to their logical conclusion, and examining the results. Writing puzzles is a great way to practice and solidify your abilities in deductive reasoning.

Gerrymandering – Puzzle 1
What was one of your favorite puzzles?

One of my favorites was actually suggested by you, Carol. For a political issue, you suggested creating a puzzle about gerrymandering, and it was an intriguing suggestion. Here again, I knew the idea could be used to make a puzzle, but it took a while to figure out exactly how. I searched to see if puzzles based on gerrymandering had been made, and I found some, but they didn’t hinge on how gerrymandering works. I thought, they are missing the point of what a gerrymandering puzzle could be.

In the puzzle I finally created, the nefarious task is to gerrymander local districts so that your side wins a majority of districts (seats) even if it does not win the majority of votes. These puzzles hopefully enlighten solvers about how incredibly influential districting can be on election results. By doing the puzzle, the solver really sees how gerrymandering works, why it is so politically powerful, and why it needs to be stopped. Later I made a few other puzzles about real-world topics, where working through the puzzle gives you a better understanding of the way a system works, like the puzzles about where to position windmills in a wind farm to maximize the energy capture, or tracking the spread of a pathogen in a population.

Tim in his grad school office at The University of Wisconsin-Madison. On the wall behind him are Knossos Games puzzles and problem-solving diagrams related to his work in educational psychology.